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ABSTRACT

The following model problem is studied:

13 du 3 du,. _
e -[; ™ (xB 3;) + 32 (8 32)] = f
[, :u=20

where § is a bounded open domain with r < 0 in (r,z) plane, P1 = 30\ To,
lo = 30 N {(r,z) : r = 0}. We introduce weighted Sobolev spaces Vk(k =
1,2), and prove:
(1) The problem has a unique solution u, and u € V;(Q) N VZ(Q).
(2) The linear finite element solution u, exists and is unique.
(3) The error u-u, in "energy norm” is of O(hz). Particularly, if Q

is a polygon, then

u - uhl1’9 = 0(h)
fu - ul. .= 0(h?)
Yn'o,q

where I*ﬂk Q(k = 1,2) are the Vk norms.
’

AMS (MOS) Subject Classifications: 65N30, 65N15

Key words: Finite element method; two dimensional singular boundary value
problem; weighted Sobolev spaces; order of convergence.
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SIGNIFICANCE AND EXPLANATION

; For two dimensional singular boundary value problems of form:

P1: u=g

where { is a bounded open domain with y > 0 in (x,y)-plane,

P1 = 30 n {(x,y) + y > 0}, Parter [13] has proposed finite difference
methods and established the corresponding theory. Wilson [16] has proposed a
finite element method for other types of two dimensional singular problems,

but did not study the convergence theory. This paper extends earlier works on

convergence of the methods to such problems.

| ’Or ]

The responsibility for the wording and views expressed in this descriptive summary lies
with MRC, and not with the authors of this report.
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THE LINEAR FINITE ELEMENT METHOD FOR A (. A

TWO-DIMENSIONAL SINGULAR BOUNDARY VALUE éRDBLEM f)}

S. Z. Zhou

Introduction ///

The numerical solution of singular boundary value p blems ave been studied by
several authors. The finite difference methods and its Fheor for a type of two~

dimensional singular boundary value problems are given in [10], {13]. The finite element

mathad for axisymmetric elastic solid is proposed in | 6}.‘,[5), [11), [14) and [20], gives
a proof of the convergence of the finite element methqds f;r one dimensional singular
problems. ([12) proves the “optimal® order of converggnce #or the method of [16] provided
the loads are axisymmetric and the solution is in Ck+1(ﬂ). The convergence of the linear

finite element method for two dimensional singular Dirichlet problem ie proved in {18}, 1In

this paper we will prove the so-called "optimal” order of convergence of the linear fiAth

element method for the following model problem:

8 [ (2 e (8 3] -
(1.1

where £ 1is a bounded open domain with r > 0 in (r,z)-plane,
P o= 3T, T = 30n {te,2): ¢ = o}.

We assume:

(1) The function B8 is uniformly Lipschitz continuous in Q.
(ii) 8 > Bo >0, Bo is a constant.

1
(1ii) r/z)c e t2a).
)
7
_ /
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Under the (x,y,z) coordinate system we have

Iv* v*

v 3¢ -1t n n -1
- é. Vo 3L ¥ dxdyds sfz' (3x ©o8 © + 3-% sin 0) ¢°r dxdyds (2.5)

Since r-10' and rq %%. are bounded in ﬂ', v. e H‘(ﬂ'), we may take the limit through

(2.5) a8 n + * and hence we obtain (2.5) as well as (2.4) with v,v* replacing v, A\

respectively. (2.1) is proved. Q.B.D.
Simple calculation derives the following results.

Corollary 2.1. If v* e H‘(Q'), then

dv*

. 3: cos 6 - dv gind

?x !

* 3
:—;-3{-1n9+%‘;——°:'9 in @+ .

Corollary 2.2. Assume v is independent of ©. Then we have for v* € H‘(ﬂ'):

Ive  dv dv*  dv
3x-ﬁcose,5;-gsin9)

for v* e H2(a%)

2., .2 2 22, a2 2
-a—-‘,f-a——;cosze-f%i:e . _3_; -a—-;ain29+g—:—c°: ®
aIx ar dy r

2 2

v+ 9%v 1 3v

Wy~ 3 ras Hnfcose,

x

ue_ 3% afe %l ady e
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3. Spaces v, v3({2], [17})
We define functionals 1°1

k,ﬂ,k =0, 1, 2, as follows:

2 Y
""o.n ¢ {zv rdrdz)

Definition 3.1.

Assume that D is an open or closed set in (r,z)-plane, D* the

correspondant axisymmetric set in (x,y,z)-space, A(D) the set of real functions defined ir
D, and

A*(D*) = {v' s v* real function defined in D®*, and there

exists v € A(D) such that v*(x,y,z) = v(lx2 + yz,z)}.
We define a mapping T: A*(D*) + A(D) as follows:

™w*(x,y,z) = v(r,z)
Obviously, the mapping T is one-to-one.

Definition 3.2.

Uk(ﬂ') =H ¥n') N A*(Q*), k = 0,1,2.

It is easy to see that U k(n') is a closed subspace in Hk(ﬂ'). Now establish the
relations between the norms I-lI X and the functionals [+Ik,Q for the elements of
H (3%)

u X(ae).

lemma 3.1. Assume v* € U k(n-), v = Ty*,

then Ivlk'ﬂ < ®, and

lv‘lzk - zﬂvl: o Vureuk@n, k=o,1. (3.1)
H (n.) 9%,

3 a2 <2 < anave? v u* eu 2(ar (3.2)

2 2,8 2 (a) 2,8,

Proof. By direct computation and corollary 2.2.




Definition 3.3. VN(R) = {viv = Tve, v* € U X(am)}, k = 0, 1, 2.
It follows from lemma 3.1 and the closeness of Uk(ﬂ') in u*(n-) that
Vx(ﬂ), k =0, 1, 2, are Banach spaces. We need the following subspace
vo(® of v
Vo) = (viv = 7ve, vo ¢ U (8%) 0 H(A4).
let v e V;(Q), v = Tv*, tr v* be the trace of v* on 3(*. We define T(trv*) as
‘the trace of v on P,. Obviously, it is zero.
By lemma 3.1 and the embedding theorems of nk(ﬂ'). We obtain the correspondent
theorems of Vk(ﬂ'). Particularly, we have the following result.

lemma 3.2. There exists a constant C' such that

2 v, 2 dv. 2 1
iy g < ¢ :[: L3P + 5 Iraxdz, v v e v () (3.3)

Finally, the following statement on denseness may be proved (see [17] for v, the
proof is similar for Vz).

lemma 3.3. Assume that the domain §i has a locally Lipschitz Boundary. Then c.(ﬁ)
is dense in Vk(ﬂ), k=1, 2.

Remark 3.1. Lemma 3.3 is not a direct corollary of the denseness theorem of

Hk(ﬂ'). If vt e Hk(ﬂ'), then there exists a sequence vn' e C.(ﬁa) converging to

v* in uk(ﬂ'). But we can not claim that vn' e A*(Qe),

Remark 3.2. The facts v € C () and v = Tv* do not imply that v* € C (7*%).

Counter example: v = r. But v e c®(@) <==> v+ @ c°(0r).

5=




4. Solution of problem (t.1)

We define a bilinear form B(*,*) on v‘(ﬂ) x v‘(n) and a linear functional

F(*) on V'(3) as follows:

Blu,v) = [ s(g—:- g—‘-;— + :—: -g{)rdrd.
Q

F(v) = [ fvrdrds
Q
Then we have the variational formulation of problem (1.1): Find u € V;(Q) such that
Blu,v) = F(v), Vvevl @ (4.1)
From now on we assume that ! has a locally Lipschitz boundary.
Theorem 4.1 Problem (4.1) has a unique golution.
Proof: It follows from lemma 3.2 and assumptions (i)-(ii) that the bilinear form B(u,v)
is coercive and continuous on V;(ﬂ) x V;(Q). And the linear functional PFr(v) is
continuous on v;(n) by virtue of assumption (iii). Hence the conclusion of the theorem
is a result of the Lax~Milgram theorem. Q.B.D.
Remark 4.1. let u be the solution of problem (4.1). Since B(u.v) is symmetric,
U is also the solution of the following problem: PFind u € V;(Q) such that
J(u) = nin  J(v)
ve V;(Q)
where J(v) = B(v,v) = 2F(v).
Consider the boundary value problem in §* corresponding to problem (1.1):
av: - [:_x"':_:; + %;(8-5—3;? + ?Tz(s-:—:?] K
(4.2)
Me: wr = 0
where 8% = T-‘B, f* = T-1f. Correspondant variational problem is: Find wt e H;(Q')

such that

B (we,vé) = P (v*), Ve n;m-) (4.3)

6=
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where
dwedv  dwrdv® Odwrdv*

B, (wh,v*) = f B'(g- ETi 3y 3 + =~ 3% 3z )axdyde

P (ve) = | te*vraxaydz

Qe
From now On we assume;
(iv). The boundary dN* {s smooth enough to ensure that problem (4.3) has a unique
solution w* and w* @ u;(n') N nz(a-). For example, we may assume that 3Q* is of
class c2 (see, for instance, [9, p.176]) or that the domain Q* is convex.
Theorsm 4.2. let u be the solution of problem (4.1). Then
wevimn v
Proof: Let u* = T 'u. We define for v* € H;(ﬂ‘) that ;
1
v(r,0,2) = v*{x,y,z) !
v(r,z) = f v(r,8,z)d8
0
It is easily proved that
ve v;(m (4.4)
- pid - 2w
dv v dv v
r { PR Tl ‘{ 3 3 (4.5)

It follows from lemma 2.1, (4.4),

Now we prove that u* is the solution of problem (4.3).

(4.5) and (4.1) that for v* e H;(ﬂ')

st = ryr = £ (230 B B - rselrare

+ 23, Flraraz = Bu, V) - BV = 0.

3
*

14
'"|< '
.‘2:]_2’ )

-/ 14
Q
Hz(ﬂ') by assumption

Hence u* is the solution of problem (4.3), and u* € uo(ﬂ')

According to definition 3.3 we obtain the conclusion of the theorem. Q.B.D.

(iv).

N




S. Linear finite element solution and its order of convergence order

Assume that the domain 2 is convex. Let Th = {c1,...,cm} be a triangula-

tion of 1, h1 the maximum edge of the triangle C,, 91 the minimum angle of

n
Ci, h= -:x hi' O = min 91, ﬂh- 121 ci' assume:
(a). © > eo >0, 90 is independent of h ({7}, [19])).

h

Define a linear finite element space V as follows:

WV - {vh c Co(ﬁ) : v, is linear function in C,, i = 1,00e,m3

A/

(e 0 on (0 - Qh) U Pi} .

Then it is easy to prove that Vh C v;(ﬂ). We have the correspondant discrete problem for

problem (4.1): Find u e vh such that

h
B(uh,vh) - r(vh), v h ev (5.1)

Theorem 5.1. Problem (5.1) has a unique solution.
The proof is similar to that of theorem 4.1.
Remark 5.1. The solution Uy of (5.1) is also the solution of the minimization problem:

Find Uh e Vh such that J(Uh) = min J(vh).
v e "
Assume that u is the solution of problem (4.1), Uy the piecewise linear

intrpolation corresponding to the triangulation T,. For any triangle C €T

h’ we now

estimate fu Let P) = (rj,zj), j = 1,2,3 be the vertexes of C,

- “II1,c'
Xj(r,z).j = 1,2,3 the so-called barycentric coordinates ({4, p. 45)), i.e. the basis

functions for the linear interpolcation on C:

A(P,) = 61 (1,3 = 1,2,3)

3 3

Then we have for any function v defined on ¢ and its linear interpolation Vit

) A[(PIV(R)) = v (P), VP EC, : (5.2)
b)
Particularly,
) Aj =1, § Xjrj =x, ] *3‘3 = gz, ¥(r,z) € C, (5.3)
b p]
It follows from (5.3) that
) Xj(rj -r) =] lj(zj -2z)=0, ¥V (r,z) ecC (5.4)
] 3




The proof of the following lemma belongs to (3].

Lemma 5.1. Assume that v € Vztc), and the condition (a) is true. Then

2 2 2
- <
Iv vIl1 c Mh .VIz’c' (5.5)

where the constant M is independent of C and V.

Proof: Assume v € C.(c) temporarily. Expand v at the point P = (r,z) by using the

Taylor's formula with integral remainder (see, for instance [6,p.36)):

av(p) , ' 2
V(R,) - v(P) = (r, - x)5— + [ (1=t)ajvimyde, 3 = 1,2,3 . {5.6)
o

3 3

where

2
- z)a , 4, = d.d

4 = (= 37 49

3 3

- r)s; + (2

]

M, = Pt +P(1-t
3 3 (1-¢t)

It follows from (5.2), (5.3) and (5.6) that

v (P) - wip) = ] A §(PIIV(R)) = v(R))
b
=3 LB, - 1) B Lo (py(z, - 2) B
j 3 3 9z 3 j 9z

1-e)r
+ § { ( t) j(P)djv(Mj)dt

By virtue of (5.4) the first sum vanishes, and we have

1

v (P - v(p) = ] [ (1 - o madvin,)ae (5.7)
3o R WA

Differentiating (5.7) we obtain

v 1 N 1 5 VM)
12 1,
T i % [ 0-aGpd & - ey Svipae + ] [ (e gafi—5 (eee (5.8
0 o0




Integrating by parts the integrals in the second sum, noting (5.4) and that

E% [djv(Mj)] - d§v(Hj), we derive from (5.8) that
v 2
1 _3_ SN |
5T " 3¢ §£ (1 - gt avimae (5.9)

It follows from the uniform basis condition (a) that (see, for instance, (8] or [15,

p.137])
A, A
Ia—ril.la—zil < n1h" (5.10)

where h is the maximum edge of c, M, = 4/s8in 60. Hence we have

1

3v1
'F'_' <uh 2[(1-c)ld

X

jV(H )ldt .

and then

aV 1
/152 - ? Zraraz < w2 [ (] [P0 - w4 - c)s/‘la viny)|ae) 2rdrdz
c c jo

-1
- t) 5/2|d v(HJ)I atj' (1 - ¢) /zdt)tdrdz

<:m BRI
jc 0 0

2 =2 1 5/2 ) 3 .2 2
= 6M}h I flae [ (1 - 0% Itley = nigg + (25 - 21570 "vmy) | “raraz

b
5 -3¢ 1 5/2 4 av(uj) 3vm,) a%vn,)
< eMoh f [lae [ (1 - e | + 2 |+ 1" |)2raraz
1 drdz 2
jo c drdz dz

where “2 = 72 H?. Make variable transformations in the integrals as follows:

g=r t+r(i-t) , n=z + 2(1-t)

3 b
Then Mj = ({,n), and the triangle C reduces to a similar triangle Cj,t with the

similarity transformation center Pj. Hence the right side of (5.11) becomes:

-10=-
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1 1 2 2 2
wh? §fae [ e 2 ey (G2 o Tl 2, 2B 2 gran

3j 2 gan 2

30 c [14 an

it
2 1 -‘V
< M,h I Jae [ (1-e)” "2g(---)azan (since g-rge € 0)
jo c

3.t

1 -1
<M n? 1Jaef vy 4%---):d:dn (since C, . cc)

2 jo c 3.
1 a 2
= mh® [ (--zaane [ (1-t) e < mpive
c 0 2,c
Hence we obtain by (5.11) that
v
I dv.2 2, .2
R S A 4 < .
£ (g7 - 3¢ rdrdz < Mntiviy
Similarly we obtain
v
I v, 2 2 2
—— o m— <
£ (33 g) rdrdz <mTIvEy
2
| (v, - vraraz < mpitvn
I 5
] 2,c
Therefore,
2 2 2 L4
- < .
Iv v1l1,c Mh Iv|2'c vvec(c), (5.12)
Finally (5.5) is deduced from (5.12) and lemma 3.3. Q.E.D.
Define "energy norm" Bh(u,u) on ﬂh as follows:
du, 2 du, 2
Bh(u,u) - f Bl(at) + (az) Jxdrdz
13
h
Theorem 5.2. Assume that u, is the solution of (5.1), u the solution of (4.1). Then
2
Bh(u uh,u uh) 0(h™) (5.13)
Proof: u), minimizes the error u = uy in the “energy norm®™ on { — B(v,v), i.e. (see

{15, p. 39])
Blu-w,a-u)= min, Blu=~v ,u-v).
L S b

a{l=




LRAEIR:

L AN Rt W et o - o

Since w = vh =0 on R - ﬂh ,» we have

Bh(u -u.u- “h) = min h Bh(u = Vpeu - vh) .

vhev
h
Define u, = 0 on Q- ﬂh. Then uy ev. So
2
Bh(u = Yeu = uh) < Bh(u - ugu - uI) < max f8efu - uI'l,Qh (5.14)
Q
By virtue of lemma 5.1 we have
n n
N e IR TR WL B L) w?, om0 (5008
h gt Cy i=1 '€y ’
(5.14) and (5.15) prove that (5.13) is valid. Q.E.D.

If 1 is a polygon, then Rh = q, nh(v,v) = B(v,v). Since B(u,v) is coercive on
v;(ﬂ), we have

Corollary 5.1. If § 4is a polygon, then
fu - “11'1,‘3 = 0(h)
tu-ul o =0?
Yy'0,0
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ABSTRACT (cont.)

where & is a bounded open domain with r < 0 in (r,z) plane, ' = 3Q\Tlo,

1
Fo =232 N {(r,z) : r = 0}, We introduce weighted Sobolev spaces vK(k =
1,2), and prove:
(1) The problem has a unique solution u, and u € v;(ﬂ) N vz(ﬂ).
(2) The linear finite element solution v, exists and is unique.

(3) The error u-u, in "energy norm" is of O(hz). Particularly, if Q

iz 8 polygon, then
fu - “h'1,9 = 0(h)

u -l o= 0(h?)

where l°lk n(k = 1,2) are the Vk norms.
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